If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2450+25x+x^2=130x
We move all terms to the left:
2450+25x+x^2-(130x)=0
We add all the numbers together, and all the variables
x^2-105x+2450=0
a = 1; b = -105; c = +2450;
Δ = b2-4ac
Δ = -1052-4·1·2450
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-105)-35}{2*1}=\frac{70}{2} =35 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-105)+35}{2*1}=\frac{140}{2} =70 $
| -n/3-7=2 | | 8x-2(3x-6)=4x+18 | | 4.9=y-3.8 | | 12^8x=2 | | -15+8m=5m+-21 | | 11.1+u/5=-1.4 | | 7x+2x=360 | | 3x-1=-2x+30 | | -9=2.4+h | | -3(2x-3)=63 | | 4x-12x=320 | | x2+3x+-4=0 | | 2(6z-2)=2 | | 3(x-2)=5(x=12) | | 200+(12x12)=644 | | 2/3+4/5=1/6b+23/10 | | 13(x+4)-6=23(5-x) | | 77+p=154 | | -6-x=2x+2 | | 5(8-2x)=140 | | 5.7=a-2.4 | | -5x+2/3=-1/4x-1/2 | | 4z-1=z-3 | | 5x=4^(1-7x) | | 3x−2=34 | | N-4(2x+3)=2x+6-(8x+2) | | 16y=49+9y | | 30x+50=10x+250 | | 12=2.4b | | 16y=49-9y | | 9/2=24/x | | 4x+9x=2x17x |